Cookies disclaimer

I agree Our site saves small pieces of text information (cookies) on your device in order to deliver better content and for statistical purposes. You can disable the usage of cookies by changing the settings of your browser. By browsing our website without changing the browser settings you grant us permission to store that information on your device.

Nuclear Investigations of Fundamental Symmetries

By Christopher Körber

PhD Defense at University of Bonn

Keywords: PhD Defense, Dark Matter, Chiral Effective Field Theory


What do we know about Dark Matter and how can we possibly describe it on a fundamental scale? Dark Matter direct detection experiments provide the intriguing possibility to discover the existence of Dark Matter. The interpretation of the experiments, however, depends on a description of Dark Matter. In this talk, I present the calculation of Dark Matter particles scattering off various light nuclei from first principles. The calculations are based on the framework of Chiral Effective Field Theory, which relates nuclear interactions to the underlaying fundamental theory: Quantum Chromodynamics. I introduce this framework and show how it can be extended to include Dark Matter interactions.