Quantifying theoretical uncertainties: Dark Matter direct detection observables

By Christopher Körber

Parallel Talk at Stavanger, Norway (Virtual)

Keywords: Dark Matter, Chiral Perturbation Theory, Bayesian Analysis


What is the nature of so-called Dark Matter, and does it interact with regular matter except through gravity? For example, direct detection experiments aim to answer this question. Propagating measurements (or constraints) to the fundamental theory requires bridging several scales—from target nucleus to individual nucleons to the level of quarks & gluons and beyond. However, the sheer number of parameters in model-independent descriptions of DM and uncertainties associated with bridging the scales make it difficult to fully quantify uncertainties from theory to experiment. This talk exemplifies challenges associated with propagating uncertainties, focusing on the description of DM scattering off light-nuclei using chiral perturbation theory in a Bayesian context.