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Abstract. Through the development of many-body methodology and algorithms, it has
become possible to describe quantum systems composed of a large number of particles
with great accuracy. Essential to all these methods is the application of auxiliary fields via
the Hubbard-Stratonovich transformation. This transformation effectively reduces two-
body interactions to interactions of one particle with the auxiliary field, thereby improv-
ing the computational scaling of the respective algorithms. The relevance of collective
phenomena and interactions grows with the number of particles. For many theories, e.g.
Chiral Perturbation Theory, the inclusion of three-body forces has become essential in
order to further increase the accuracy on the many-body level. In this proceeding, the an-
alytical framework for establishing a Hubbard-Stratonovich-like transformation, which
allows for the systematic and controlled inclusion of contact three- and more-body inter-
actions, is presented.

1 Introduction

The Hubbard-Stratonovitch (HS) transformation [1, 2] is a common tool in many areas of theoretical
physics, ranging from condensed matter to nuclear physics [3, 4]. Though the basic idea—completing
the square—is quite simple, the practical benefits can be numerous. It is used to linearize the Hamil-
tonian in terms of its density or number operator by the introduction of an auxiliary field, which
eventually is integrated out. Thus, a many-body system can effectively be described as a one-body
system which interacts with a background field, drastically simplifying the numerical description of
many-body problems [5-8].

In this proceeding, which closely follows [9], we generalize the HS transformation to linearize ar-
bitrary many-body systems by the introduction of just one auxiliary field, which is distributed accord-
ing to specific probability distributions that allow the inclusion of different auxiliary field interactions.
The presentation is organized as follows: in section 2 we review the basic idea of the original HS trans-
formation from a more diagrammatic perspective and explore how it could possibly be generalized.
In section 3 we discuss the formalism which enables the identification of a linearized Hamiltonian
including auxiliary fields which eventually corresponds to a specific many-body Hamiltonian after in-
tegrating out the auxiliary fields. A case study for an analytically solvable two-site model is presented
in section 4 and we finally discuss our results in section 5.



2 The Basic Idea

In the original Hubbard-Stratonovich transformation one linearizes the action by the introduction of
a background field ¢ € R, which couples to the usual fermionic (or bosonic) fields . From now on,
we denote the fermionic (or bosonic) bilinear by the density operator p = . After integrating over
this auxiliary field, one recovers the original interaction

exp {+A?p?} = % f D¢ exp{-¢” - 2VA? gp} . (1)

From a diagrammatical point of view, the auxiliary field can be interpreted as a bosonic spin-zero field
with a Yukawa-like fermion interaction (and a constant propagator).

If one interprets the right-hand-site of equation (1) as a path integral, the diagrammatic inter-
pretation would be the sum of products of two-fermion diagrams which exchange an auxiliary field.
Integrating out the auxiliary field, which diagrammatically corresponds to contracting the auxiliary
field lines, effectively generates the desired two-body fermion interaction (see figure 1).
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Figure 1: Diagramatic interpretation of the original Hubbard-Stratonovich transformation. One com-
putes all possible diagrams allowed by the interactions [from (a) to (b)] and integrates out the auxiliary
field to obtain an effective interaction [from (b) to (c)].

The generalization of this diagrammatic interpretation is the basic idea to include three-body
forces. We start with a possible diagram which consists of one-body fermion and any possible N-
body auxiliary field interaction.
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Figure 2: Allowed diagrams and induced forces due to transformation with a quadratic auxiliary field,
one-body fermion interaction.

The simplest example is the case of a one-body fermion, two-body auxiliary field interaction
(figure 2a) which can generate a three-body fermion interaction (figure 2b). In order to guarantee
a convergent integrand, the highest power of auxiliary fields appearing in the exponential should be
at least ¢*. After contracting the auxiliary field lines, one obtains the desired three-fermion force
(figure 2c). However, when one actually computes all possible diagrams, one generates an infinite
tower of different N-fermion diagrams (see figures 2d, 2e ...). The only way to include three- and



higher-body forces in a controlled fashion is to identify the induced N-fermion couplings, depending
on the auxiliary field interaction coefficients, and, at best, find a convergent and controllable expansion
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3 The Formalism

In order to stay as general as possible, we do not limit ourselves to quadratic interactions between
the auxiliary field and the fermion bilinears. The most general form with one type of auxiliary-field
self-interaction is given by the following integral
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where p = 3/ Yy s is the fermion density operator, f runs over the different fermion species at a
given site and Py(¢) is the normalized probability distribution. This integral is well defined for any
coefficients ¢; € € and N € N. It is sufficient to consider auxiliary fields at just one point in space-
time, because the the density operators at different sites commute and the auxiliary fields get no kinetic
term.

The argument of the exponential in (3) describes all possibly allowed interactions between the
one-fermion operator p and auxiliary fields, with j = 1...2N — 1 open auxiliary field lines of strength
c¢;. Accordingly, the integral is normalized in the case of ¢; = 0 Vj = Z.y = 1, which corresponds to
the absence of auxiliary fields. For any c; # 0, one effectively induces N-body forces after integrating
out the auxiliary fields. Hence, to find a controlled description of N-body fermion forces A*) in terms
of auxiliary field coefficients c¢;, one has to match both expressions order by order in the operator
expansion of the exponential
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The expansion of equation (3) involves integration over the probability distribution times another
polynomial with arbitrary powers of ¢
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Note that odd powers in ¢ vanish by symmetry. Using Faa di Bruno’s formula [10]
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we simultaneously expand equation (3) in ¢ and p and equation (2) in p only
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where ||772|| denotes the sum over all components of 7. The set MM is the same as defined in equation
(6). Because one can easily verify' that the Z%" is linear in A, one can recursively determine the
dependence of 1™ on the previous coefficients AX) with k < M and the expansion in the ¢ coefficients
by requiring
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We want to highlight that all of the obtained results are smooth in the limit of N — oo, which would
allow one to incorporate an infinite amount of freely tuneable c;-coeflicients. In this limit, the prob-
ability distribution for the auxiliary fields becomes uniform: P.(¢) = 1/2 for ¢ € (-1, 1) and zero
otherwise. However, for every different order N, the dependence of the induced forces A¥ on the
auxiliary coefficients c; slightly changes. We present an example with N = 2 and N = oo in figure 3.

Because the analytic form of the induced forces that depend on the auxiliary field interaction
parameters can be tuned in a completely general fashion, we provide a Mathematica notebook in the
Supplementary Material of Ref. [9] which can be used to compute the A for the problem of choice.

Furthermore, we emphasize that the infinite tower of induced interactions can be systematically
controlled. It can be inductively shown? that the coefficient ¥ « ¢; ¢, - - - ¢;,. Thus, if the magnitude
of ¢; coefficients is smaller than one, higher forces become increasingly smaller.

4 Numerical Results

In order to demonstrate the applicability of the proposed method for including N-body forces in
lattice algorithms, we set up a toy problem which can be solved analytically and compare numerically
sampled results to their analytical counterparts. As a test system, we choose a two-site model (sites

= 0 and 1) and place up to 3 different fermion species f at each site. The Hamiltonian which
describes this system is given by

0=« —3ZZaf,a e Z P2+ A® Z : (10)

f=1 G, i€{0,1} i€{0,1}

Here, ay; (a}i) annihilates (creates) a fermion of species f at site i and p; = Zf &;i& 1. 18 the fermion
density or number operator at site i. The kinetic part of the Hamiltonian sums over nearest neighbours
(i, j) € {(0, 1), (1,0)}, while the strength of the two-body force 1® and three-body force 1 will take

Tn order to obtain the coefficient A, one needs that my; > 1. But because i € MM we have that 1m +2my + -+ +
Mmy = M which means my; = Landm; =0Vj# M.

2 A probably more intuitive argument can be directly read off figure 3: because all allowed auxiliary field-fermion interac-
tions are proportional to the fermion bilinear, an N-body fermion interaction is exactly proportional to N auxiliary field-fermion
interactions and thus must contain N c; coefficients.
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Figure 3: We present the results for the induced one-, two- and three-body forces for distributions
with N = 2 and N = oo with allowed auxiliary-fermion interactions presented in the upper right box
(cj>3 = 0). The label below each diagram corresponds to the ¢ j-coefficient dependence of the induced
effective forces ¥, The upper row of coefficients corresponds to N = 2 and the lower row to N = 0.
Here, we have defined y = I'(3/4)/T'(1/4) ~ 0.34. Four-body and higher forces are not displayed
and are, in general, non-zero. Note that the wiggly lines correspond to fully dressed auxiliary field
propagators.

different values in order to explore the capabilities of the proposed transformation. We analytically
compute the largest eigenvalue of the transfer matrix 7(7) =: exp(—7H) : (see [5]), and compare the
result to the large time projection of the transfer matrix acting on an initial target state Wr

E = — lim 0, log Z[7, ¥r],

ZIn,¥rl = (Prl s e ™ |‘I’T>:(1—[fd¢xPN(¢x))7<[T’$,Cj,\PT]~ (1)

We compute the large time projected matrix element using the proposed prescription for auxiliary
fields. In other words we express the Hamiltonian of equation (10) in terms of effective couplings c;
and fermion-bilinear auxiliary field interactions®. The coefficients c; are matched to the effective two-
and three-body forces by the relations listed in figure 3 and the remaining integral is computed by
sampling the auxiliary field according to distribution Py(¢) (same distribution for both lattice sites).
Finally the function K is obtained by sandwiching the auxiliary-field-transformed transfer matrix with
an (arbitrary) initial wave function, which we have chosen as [¥7) = ijzl %[a;,o - “;,1] |0).

The comparison between analytical and stochastic computations is demonstrated for two- and
three-fermion systems F = 2 and 3, for the regular Hubbard-Stratonovich transformation (N = 1)

3Note that we have subtracted the effects of the induced one-body force directly on the level of auxiliary fields. Already the
agreement of one-body energy levels in this framework is a non-trivial cross-check.
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Figure 4: E(t)/« for different systems. All systems were studied with 2 x 10® measurements. Some
systems show a signal-to-noise problem and others yield an easy extraction of a constant plateau
in the long-time-limit. The left panels all show two-fermion systems and the corresponding right
panels show the three-fermion systems with the same parameters. In the top (middle) [bottom] two
panels we show a system with repulsive (absent) [attractive] two-body forces. Red (blue) [green]
points correspond to repulsive (absent) [attractive] three body forces. The blue points were sampled
according to the HS distribution P; and the other points according to P.,. The data in the middle two
panels were generated with P, and coefficients ¢; = 0 for j > 3 tuned to exactly cancel the two-body
force, and we show dashed lines for the corresponding non-interacting energies. This figure is taken
from [9].

and generalized transformation following the uniform distribution (N = o0), for attractive, absent and
repulsive two-body forces A® € {=1.74,0.0, +1.74} in case of both transformations and attractive,
absent and repulsive three-body forces A® e {-0.245,0.0,+0.245} in case of the generalized trans-
formation with N = oco. Because we are free to pick any values for the infinite number of coefficients
c¢;j in case of the N = oo transformation, we arbitrarily pick ¢; = 0 for j > 3. The results of the
comparison can be found in figure 4. Solid lines correspond the the analytical results and data points
to the sampled auxiliary field computations. Error bars correspond to the stochastic uncertainty of



sampled observables. Data points at a given time step 7 for different values of the three-body force
are slightly shifted for visualisation purposes.

All of the results, in the large-time limit, agree well with the analytical results within uncertain-
ties. However, computations for specific values of the induced two- and three-body forces suffer from
relatively large statistical uncertainties. This is expected and can be explained by the Hamburger trun-
cated momentum problem [11, 12]. In forthcoming work [13] we intend to analyse such fluctuations
in terms of signal-to-noise behaviour and their relation to the sign problem in more detail.

5 Discussion

We have presented a general prescription which generalizes the Hubbard-Stratonovich transformation
such that any N-body contact interactions for fermions (and similarly for bosons) can be cast to a set
of linearized fermion (boson) interactions with an auxiliary field. Depending on the distribution of
auxiliary fields, ranging from gaussian to uniform, more possible interactions with the auxiliary field
can be included. Each of the linear interactions with the auxiliary field comes with an a priori freely
tunable interaction coeflicient that can be analytically determined to reproduce the original forces
in a controled fashion after integrating out the auxiliary fields. If one chooses a proper sampling
distribution and as a consequence obtains a sufficient amount of auxiliary interactions, the set of
different interaction coefficients which reproduce the original forces is infinite.

We verify these predictions for a simple two-site model and confirm that statistical simulations,
using the presented prescription, converge against their analytical result within uncertainties. This
non-trivial cross-check is demonstrated for a set of attractive, absent and repulsive two- and three-
body interactions. We find that certain combinations of interaction coefficients are more favourable
than others in terms of convergence of statistical observables: e.g. one should prefer real over complex
coefficients. Furthermore, for certain effective forces, it is not possible to find sets of interaction
coeflicients which do not suffer from large statistical fluctuations.

For upcoming work, we intend to further investigate the signal-to-noise behaviour for different
sets of interaction coefficients. Also, it might be interesting to generalize this transformation even
further to include non-central and non-local interactions or understand the renormalisation induced
by the effective forces on the level of interaction coefficients.

Last but not least, we expect that our findings impact a variety of physical systems for which the
inclusion of many-body forces is relevant. Examples include the non-perturbative addition of three-
body forces in nuclear lattice effective field theory, the study of systems near the Efimov threshold
and studies of halo nuclei.
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